Plagiarism Detection Process using Data Mining Techniques
DOI:
https://doi.org/10.3991/ijes.v5i4.7869Abstract
As the technology is growing very fast and usage of computer systems is increased as compared to the old times, plagiarism is the phenomenon which is increasing day by day. Wrongful appropriation of someone else’s work is known as plagiarism. Manually detection of plagiarism is difficult so this process should be automated. There are various tools which can be used for plagiarism detection. Some works on intrinsic plagiarism while other work on extrinsic plagiarism. Data mining the field which can help in detecting the plagiarism as well as can help to improve the efficiency of the process. Different data mining techniques can be used to detect plagiarism. Text mining, clustering, bi-gram, tri-grams, n-grams are the techniques which can help in this process
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)