Leveraging Smartphone Sensors for Detecting Abnormal Gait for Smart Wearable Mobile Technologies





human gait detection, abnormal gait, machine learning, deep learning, sensors, accelerometer, gyroscope


Walking is one of the most common modes of terrestrial locomotion for humans. Walking is essential for humans to perform most kinds of daily activities. When a person walks, there is a pattern in it, and it is known as gait. Gait analysis is used in sports and healthcare. We can analyze this gait in different ways, like using video captured by the surveillance cameras or depth image cameras in the lab environment. It also can be recognized by wearable sensors. e.g., accelerometer, force sensors, gyroscope, flexible goniometer, magneto resistive sensors, electromagnetic tracking system, force sensors, and electromyography (EMG). Analysis through these sensors required a lab condition, or users must wear these sensors. For detecting abnormality in gait action of a human, we need to incorporate the sensors separately. We can know about one's health condition by abnormal human gait after detecting it. Understanding a regular gait vs. abnormal gait may give insights to the health condition of the subject using the smart wearable technologies. Therefore, in this paper, we proposed a way to analyze abnormal human gait through smartphone sensors. Though smart devices like smartphones and smartwatches are used by most of the person nowadays. So, we can track down their gait using sensors of these intelligent wearable devices. In this study, we used twenty-three (N=23) people to record their walking activities. Among them fourteen people have normal gait actions, and nine people were facing difficulties with their walking due to their illness. To do the stratification of the gait of the subjects, we have adopted five machine learning algorithms with addition a deep learning algorithm. The advantages of the traditional classification are analyzed and compared among themselves. After rigorous performance analysis we found support vector machine (SVM) showing 96% accuracy, highest among the tradition classifiers. 70%, 84%, and 95% accuracy is obtained by the logistic regression, Naïve Bayes, and k-Nearest Neighbor (kNN) classifiers, respectively. As per the state-of-the art, deep learning classifiers has been proven to outperform the traditional classifiers in similar binary classification problems. We have considered the scenario and applied the 2D convolutional neural network (2D-CNN) classification algorithm, which outperformed the other algorithms showing accuracy of 98%. The model can be optimized and can be integrated with the other sensors to be utilized in the mobile wearable devices.

Author Biographies

Md Shahriar Tasjid, Daffodil International University

Student, Department of Computer Science and Engineering, Daffodil International University

Ahmed Al Marouf, Daffodil International University

Senior Lecturer, Department of Computer Science and Engineering, Daffodil International University




How to Cite

Tasjid, M. S., & Marouf, A. A. (2021). Leveraging Smartphone Sensors for Detecting Abnormal Gait for Smart Wearable Mobile Technologies. International Journal of Interactive Mobile Technologies (iJIM), 15(24), pp. 167–175. https://doi.org/10.3991/ijim.v15i24.25891