Android Application of Leaf Identification System
DOI:
https://doi.org/10.3991/ijim.v16i15.31881Keywords:
leaf identification, CNN, Android application, TensorFlow LiteAbstract
Leaf identification image is consistently a difficult task when using computer vision. The convolutional component extraction methods on images have their impediment and limitation, such as low accuracy, are not adaptable and less promising when converted to genuine application. The reasons are the lack of dataset needed to build a recognition model. Likewise, using the computer as a tool is bothering as it restricts the task in the research lab only. Convolutional Neural Network (CNN) shows a great solution for the computer version. Subsequently, this project utilizes the CNN’s properties to solve the image classification task, and the CNN model chosen is run in Phyton coding in TensorFlow Lite. It is similar to TensorFlow’s running code, but this project focused on building an Android application. It can perform faster and produce high accuracy results. There are four types of leaves involved in this project: betik, kari, pudina, and cengal. As a result, the model could reach around 99% accuracy with a 0.176 error rate. Ultimately, an Android application called Leaf identification is created. The model is sent and integrated into the apps that work with a concentrated information base to help put away and deal with the pictures. Hence, an Android leaf image identifier using CNN is proposed to solve the stated problem and is believed to contribute to education and research.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Hazwan Hakim, Sharifa, Dr Kadir , Umi Fadlillah

This work is licensed under a Creative Commons Attribution 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)