Improved Methods for Automatic Facial Expression Recognition
DOI:
https://doi.org/10.3991/ijim.v17i06.37031Keywords:
Facial Expression, Machine Learning, Deep Learning, Facial Land- Marks, Convolution Neural Network [CNN]Abstract
Facial expressions constitute one of the most effective and instinctive methods that allow people to communicate their emotions and intentions. In this context, the both Machine Learning (ML) and Convolutional Neural Networks (CNNs) have been used for emotion recognition. Efficient recognition systems are required for good human-computer interaction. However, facial expression recognition is related to several methods that impact the performance of facial recognition systems. In this paper, we demonstrate a state-of-the-art of 65% accuracy on the FER2013 dataset by leveraging numerous techniques from recent research and we also proposed some new methods for improving accuracy by combining CNN architectures such as VGG-16 and Resnet-50 with auxiliary datasets such as JAFFE and CK. To predict emotions, we used a second approach based on geometric features and facial landmarks to calculate and transmit the feature vector to the SVM model. The results show that the ResNet50 model outperforms all other emotion prediction models in real time by maximizing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohamed El Ghmary, Said ZIANI, Hassan ECHOUKAIRI, Ali OUACHA

This work is licensed under a Creative Commons Attribution 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)