Cloud Intrusion Detection System Based on SVM
DOI:
https://doi.org/10.3991/ijim.v17i11.39063Keywords:
Detection system, Machine Learning; network intrusion detection; Cloud computing, SVM, Normal and abnormal behaviors.Abstract
The demand for better intrusion detection and prevention solutions has elevated due to the current global uptick in hacking and computer network attacks. The Intrusion Detection System (IDS) is essential for spotting network attacks and anomalies, which have increased in size and scope. A detection system has become an effective security method that monitors and investigates security in cloud computing. However, several existing methods have faced issues such as low classification accuracy, high false positive rates, and low true positive rates. To solve these problems, a detection system based on Support Vector Machine (SVM) is proposed in this paper. In this method, the SVM classifier is utilized for network data classification into normal and abnormal behaviors. The Cloud Intrusion Detection Dataset is used to test the effectiveness of the suggested system. The experimental results show which the suggested system can detect abnormal behaviors with high accuracy.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Haider TH.Salim ALRikabi, Khattab M. Ali Alheeti, Ali Azawii Abdu Lateef, Abdulkareem Alzahrani, Azhar Imran, Duaa Al_Dosary
This work is licensed under a Creative Commons Attribution 4.0 International License.