Gender Recognition of Human from Face Images Using Multi-Class Support Vector Machine (SVM) Classifiers

Authors

  • Mohammed Jawad Al_Dujaili Departement of Electronic and Communication, Faculty of Engineering, University of Kufa, Iraq
  • Haider TH.Salim ALRikabi Electrical Engineering Department, College of Engineering, Wasit University, Wasit, Al Kut, Iraq
  • Nisreen Khalil abed Department of Electrical Engineering, College of Engineering, Wasit University, Al Kut, Iraq
  • Ibtihal Razaq Niama ALRubeei Department of Electrical Engineering, College of Engineering, Wasit University, Al Kut, Iraq

DOI:

https://doi.org/10.3991/ijim.v17i08.39163

Keywords:

Gender recognition, Gabor, HOG, SURF, SVM

Abstract


In the realm of robotics and interactive systems, gender recognition is a crucial problem. Considering the several uses it has in security, web search, human-computer interactions, etc., gender recognition from facial photos has garnered a lot of attention. The need to use and enhance gender recognition techniques is felt more strongly today due to a significant development in the design of facial recognition systems. Relatively speaking to other approaches, the progress gained in this area thus far is not exceptional. Thus, a novel method has been adopted in this study to improve accuracy in comparison to earlier research. To create the best rate of accuracy and efficiency in the suggested method of this research, we choose a minimal set of characteristics. Testing on the FERET and UTK-Face datasets reveals that our suggested algorithm has a lower degree of inaccuracy. In this article, the input image of the person's face is pre-processed to extract the right features from the face once the person's face has been recognized. Gender separation is achieved using Multi-class Support Vector Machine (SVM) Classifiers after features from normalized images have been extracted using Histogram Oriented Gradient (HOG), Gabor Filters, and Speeded Up Robust Features (SURF), as well as their combination to select the most appropriate feature from them as input for gender classification. As a feature reduction feature, the Principal Component Analysis (PCA) algorithm is also employed. Using the proposed approach, 98.75% gender recognition precision has been accomplished on the FERET database and a runtime performance of 0.4 Sec. on the UTK-Face database, 97.43% gender recognition accuracy has been accomplished and a runtime performance of 0.5 Sec.

Author Biography

Haider TH.Salim ALRikabi, Electrical Engineering Department, College of Engineering, Wasit University, Wasit, Al Kut, Iraq

Wasit University,College of Engineering,Electrical Engineering Department

Downloads

Published

2023-04-26

How to Cite

Mohammed Jawad Al_Dujaili, ALRikabi, H. T., Nisreen Khalil abed, & Ibtihal Razaq Niama ALRubeei. (2023). Gender Recognition of Human from Face Images Using Multi-Class Support Vector Machine (SVM) Classifiers. International Journal of Interactive Mobile Technologies (iJIM), 17(08), pp. 113–134. https://doi.org/10.3991/ijim.v17i08.39163

Issue

Section

Papers