Proposing a Feature Selection Approach to Predict Learners' Performance in Virtual Learning Environments (VLEs)
DOI:
https://doi.org/10.3991/ijet.v18i11.35405Keywords:
Educational data mining (EDM), feature selection, prediction techniques, student performance, Virtual Learning Environment (VLEs), Open University Learning Analytics Dataset (OULAD)Abstract
Predicting students' success in virtual learning environments (VLEs) can help educational institutions improve their online services and provide efficient online learning content. However, this cannot be achieved without identifying the possible effective features that have a high influence on students' performance. This research aims at providing an early prediction approach to learners' achievement on VLEs. A new feature selection method called a Developed Sequential Feature Selection (D-SFS) was proposed to identify the most effective features that could highly enhance prediction accuracy. The findings suggest that the D-SFS method outperforms the original Sequential Forward Selection (SFS) approach. The prediction accuracy using the SFS method was 92.466% with seventeen features, whereas the proposed approach successfully predicted 92.518% of students' performance using seven features only. Such outcomes highlight the importance of implementing a feature selection method to enhance prediction accuracy, decrease the number of features, and reduce the model's time and execution complexity.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Miami Abdul Aziz Al-Masoudy, Ahmed Al-Azawei

This work is licensed under a Creative Commons Attribution 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)