An Algorithm for Generating a Recommended Rule Set Based on Learner's Browse Interest

Xiaowei Hao, Shanshan Han


To personalize the recommended learning information according to the interests of the learner, a recommendation rule set generation algorithm based on learner browsing interests was proposed. First, the learner's browsing behavior was captured. A multivariate regression method was used to calculate the quantitative relationship between the learner's browsing behavior and the degree of interest in the web page to generate a learner's current interest view (CIV). With this current interest view, a content-based collaborative filtering personalized information recommendation service was provided to learners. Then, a new weighted association rule algorithm was used to discover the associations between the items, so that the degree of recommendation was obtained. Furthermore, the degree of recommendation was used as a personalized recommendation service for learners with long-term interests. The results showed that the proposed algorithm effectively improved the quality of information recommendation and the real-time performance of the recommendation. Therefore, this algorithm has a good application value in the field of personalized learning recommendation.


weighted association rule algorithm; browsing interest; personalized recommendation; current interest view

Full Text:


Copyright (c) 2018 Xiaowei Hao, Shanshan Han

International Journal of Emerging Technologies in Learning (iJET) – eISSN: 1863-0383
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo EI Compendex logo IET Inspec logo DOAJ logo DBLP logo Learntechlib logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo