Comparative Analysis for Boosting Classifiers in the Context of Higher Education

Eslam Abou Gamie, Samir Abou El-Seoud, Mostafa A. Salama

Abstract


Machine learning techniques are applied on higher education data for analyzing the interac-tion between the students and electronic learning systems. This type of analysis serves in predicting students’ scores, in alerting students-at-risk, and in managing the degree of stu-dent engagement to educational system. The approaches in this work implements the divide and conquer algorithm on feature set of an educational data set to enhance the analysis and prediction accuracy. It divides the feature set into a number of logical subgroups based on the problem domain. Each subgroup is analyzed separately and the final result is the combi-nation of the results of the analysis of these subgroups. The classifier that shows the best prediction accuracy is dependent on the logical non-statistical nature of the features in each group. Both traditional and boosting classifiers are utilized on each dataset, from which a comparison is conducted to show the best classifiers along with the best dataset. This ap-proach provides the possibility to apply a brute force algorithm in the selection of the best feature subgroups with a low computational complexity. The experimental work shows a high prediction accuracy of the students-at-risk relative to the current research, and provides a list of new important features in the field of electronic learning systems.

Keywords


Learning Analytics, Education Data Mining, AdaBoost, XgBoost, Random For-est, Support Vector Machine, OULAD, Virtual Learning Environment, Learning Management System.

Full Text:

PDF


Copyright (c) 2020 Samir Abou El-Seoud, Eslam Abou Gamie, Mostafa A. Salama


International Journal of Emerging Technologies in Learning (iJET) – eISSN: 1863-0383
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo EI Compendex logo IET Inspec logo DOAJ logo DBLP logo Learntechlib logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo