An Improved Apriori Algorithm for Association Mining Between Physical Fitness Indices of College Students

Authors

  • Tao Pan Guizhou University of Commerce

DOI:

https://doi.org/10.3991/ijet.v16i09.22747

Abstract


The physical fitness of college students can be evaluated scientifically based on the data of physical education (PE). This paper firstly relies on the Apriori algorithm to mine the hidden correlations between the physical fitness indices from the PE data on college students, and identify the indices closely associated with the physical fitness of college students. Then, the Apriori algorithm was improved to reduce the time complexity of association rule mining. Based on the improved algorithm, it was learned that the correlation coefficients of several indices surpassed the minimum support of 0.2 and minimum confidence of 0.7, reflecting their important impacts on physical fitness. Thus, physical fitness of college students is significantly influenced by speed, endurance, flexibility, and vital capacity, but not greatly affected by height and weight. The research results provide an important guide for the test and curriculum designs of PE for college students.

Author Biography

Tao Pan, Guizhou University of Commerce

Tao Pan was graduated from School of Physical Education, Guizhou Normal University, he is a lecture in Guizhou University of Commerce, and his main research direction is youth sports. E-mail: 201510468@gzcc.edu.cn

Downloads

Published

2021-05-04

How to Cite

Pan, T. (2021). An Improved Apriori Algorithm for Association Mining Between Physical Fitness Indices of College Students. International Journal of Emerging Technologies in Learning (iJET), 16(09), pp. 235–246. https://doi.org/10.3991/ijet.v16i09.22747

Issue

Section

Papers