Efficient Data Mining Model for Question Retrieval and Question Analytics using Semantic Web Framework in Smart E-Learning Environment
DOI:
https://doi.org/10.3991/ijet.v17i01.25909Keywords:
Data Mining, Deep Learning, smart and automated information retrieval mechanism, weight-age determinationAbstract
In the field of Information recovery, the fundamental target is to discover important just as most applicable data concerning a few questions. However, the essential issue regarding recuperation has reliably been, that the request for an area is enormous so much that it has gotten very difficult to recuperate applicable information capably. In any case, with the latest progressions in profound learning and AI models, calculations, applications brilliant and computerized data recovery component matched with text examination to decide different characterizing boundaries alongside intricacy and weight-age assurance of inquiries. By focusing, the cutoff points and hardships, like CPU cost, efficiency, automation and congruity, we have assigned our information recuperation structure, particularly towards the Academic Institutional Domain to consider the interest of various association related inquiries. The aim is to make an efficient data mining and an analytical model that can automate an efficient question retrieval and analysis for complexity and weight-age determination.
Downloads
Published
2022-01-20
How to Cite
Sengupta, S., Banerjee, A., & Chakrabarti, S. (2022). Efficient Data Mining Model for Question Retrieval and Question Analytics using Semantic Web Framework in Smart E-Learning Environment. International Journal of Emerging Technologies in Learning (iJET), 17(01), pp. 4–17. https://doi.org/10.3991/ijet.v17i01.25909
Issue
Section
Papers
License
Copyright (c) 2021 Subhabrata Sengupta, Anish Banerjee
This work is licensed under a Creative Commons Attribution 4.0 International License.